
The Practice of a Compositional Functional
Programming Language?

Timothy Jones1 and Michael Homer2

1 Montoux, New York, NY, USA
tim@montoux.com

2 Victoria University of Wellington, Wellington, New Zealand
mwh@ecs.vuw.ac.nz

Abstract. Function composition is a very natural operation, but most
language paradigms provide poor support for it. Without linguistic sup-
port programmers must work around or manually implement what would
be simple compositions. The Kihi language uses only composition, makes
all state visible, and reduces to just six core operations. Kihi programs
are easily stepped by textual reduction but provide a foundation for
compositional design and analysis.

Keywords: function composition · concatenative programming.

1 Introduction
Programming languages exist in many paradigms split along many different axes.
For example, there are imperative languages where each element of the code
changes the system state somehow before the next step (C, Java); there are
declarative languages where each element of the code asserts something about
the result (Prolog, HTML); there are functional languages where each element
of the code specifies a transformation from an input to an output (Haskell, ML,
Forth). Functional languages can be further divided: there are pure functional
languages (Haskell), and those supporting side effects (ML). There are languages
based on applying functions (Haskell) and on composing them (Forth).

It is composition that we are interested in here. Forth is a language where
the output or outputs of one function are automatically the inputs of the next,
so a program is a series of function calls. This family is also known as the
concatenative languages, because the concatenation of two programs gives the
composition of the two: if xyz is a program that maps input A to output B,
and pqr is a program that maps B to C, then xyzpqr is a program that maps
A to C. Alternatively, they can be analysed as languages where juxtaposition
of terms indicates function composition, in contrast with applicative functional
languages like Haskell where it indicates function application.

Many concatenative languages, like Forth, are stack-based: operations push
data onto the stack, or pull one or more items from it and push results back on.
This is sometimes regarded as an imperative mutation of the stack, but functions

? This is a post-peer-review, pre-copyedit version of an article published in Springer
LNCS. The final authenticated version is available online at: https://doi.org/10.
1007/978-3-030-02768-1 10

https://doi.org/10.1007/978-3-030-02768-1_10
https://doi.org/10.1007/978-3-030-02768-1_10

in these languages can also be regarded as unary transformations from a stack to
another stack. Stack-based languages include Forth, PostScript, RPL, and Joy,
and other stack-based systems such as Java bytecode can be (partially) analysed
in the same light as well. Most often these languages use a postfix syntax where
function calls follow the operations putting their operands on the stack.

Concatenative, compositional languages need not be stack-based. A language
can be built around function composition, and allow programs to be concate-
nated to do so, without any stack either implicit or explicit. One such language
is Om [2], which uses a prefix term-rewriting model; we present another here.

In this paper we present Kihi, a compositional prefix concatenative func-
tional language with only six core operations representing the minimal subset
to support all computation in this model, and a static type system validating
programs in this core. We also present implementations of the core, and of a
more user-friendly extension that translates to the core representation at heart.

A Kihi program consists of a sequence of terms. A term is either a (possibly
empty) parenthesised sequence of terms (an abstraction, the only kind of value),
or one of the five core operators:

– apply, also written ·: remove the parentheses around the subsequent ab-
straction, in effect splicing its body in its place.

– right, or �: given two subsequent values, insert the rightmost one at the end
of the body of the left. In effect, partial application of the left abstraction.

– left, or �: given two subsequent values, insert the rightmost one at the start
of the body of the left. A “partial return” from the first abstraction.

– copy, or ×: copy the subsequent value so that it appears twice in succession.
– drop, or �: delete the subsequent value so that it no longer appears in the

program.

These operations form three dual pairs: abstraction and apply; right and left;
copy and drop. We consider abstraction an operation in line with these pairings.

At each step of execution, an operator whose arguments are all abstractions
will be replaced, along with its arguments, with its output. If no such operator
exists, execution is stuck. After a successful replacement, execution continues
with a new sequence. If more than one operator is available to be reduced, the
order is irrelevant, as Kihi satisfies Church-Rosser (though not the normalisation
property), but choosing the leftmost available reduction is convenient.

This minimal core calculus is sufficient to be Turing-complete. We will next
present some extensions providing more convenient programmer facilities.

2 Computation

Combined with application, the left and right operators are useful for shuffling
data in and out of applications. The left operator in particular is useful for
reordering inputs, since each subsequent use of � moves a value to the left of
the value that it used to be to the right of. The swap operation, which consumes
two values and returns those values in the opposite order, can be defined from the

core operators as · � � (). For instance, executing swap x y reduces through
the following steps: · � � () x y −→ · � (x) y −→ · (y x) −→ y x.

The under operation · � executes an abstraction “below” another, preserv-
ing its second argument for later use and executing the first with the remaining
program as its arguments. The flexibility of under demonstrates the benefit of a
compositional style over an applicative one. We do not need to reason about the
number of inputs required by the abstraction, nor the number of return values:
it is free to consume an arbitrary number of values in the sequence of terms, and
to produce many values into that sequence as the result of its execution.

As Kihi is a compositional language, composing two operations together is
as simple as writing them adjacently. Defining a composition operator that con-
sumes two abstractions as inputs and returns the abstraction representing their
composition is more involved, since the resulting abstraction needs to be con-
structed by consuming the abstractions into the output and then manually ap-
plying them. The compose operation is defined as � � (· under (·)). This
operation brings two abstractions into the abstraction defined in the operation,
which will apply the rightmost first and then the left. The leftmost abstraction
can consume outputs from the rightmost, but the right cannot see the left at all.

2.1 Data Structures

Abstractions are the only kind of value in Kihi, but we can build data structures
using standard Church-encodings. In the Church-encoding of booleans, true

and false both consume two values, with true returning the first and false

the second. In Kihi, false is equivalent to (�): since the drop operation removes
the immediately following value, the value that appears after that (in effect, the
second argument) is now at the head of the evaluated section of the sequence.
The definition of true is the same, but with a swapped input: (� swap).

The definition of standard boolean combinators like and and or each involve
building a new abstraction and moving the boolean inputs into the abstraction
so that, when applied, the resulting abstraction behaves appropriately as either a
true or false value. For instance, or can be defined as � � (· · swap true).
The result of executing · or x y is · · x true y: if x is true, then the result is
an application of true, otherwise the result is an application of y.

In the Church-encoding of the natural numbers, a number n is an abstraction
that accepts a function and an initial value, and produces the result of applying
that function to its own output n times. In this encoding, zero is equivalent to
false, since the function is ignored and the initial value is immediately returned.
In Kihi, the Church-encoding of the successor constructor suc is � (· under (·)
swap under (×)). For an existing number n and a function f, executing · suc
n f produces the sequence · f · n f: apply n to f, then apply f once more to the
resulting value. Once again, the function can be flexible in the number of inputs
and outputs that it requires and provides: so long as it provides as many as it
requires, it will perform a reduction with a constant number of inputs. For an
unequal number of inputs to outputs, the function will dynamically consume or
generate a number of values proportional to the natural number that is applied.

2.2 Recursion

To be Turing-complete, the language must also support recursion. The recursion
operation Y is defined in Kihi as � × � (· under (� � (·) ×)). For any
input f, executing Y f first produces the abstraction (· under (� � (·) ×)
f), and then copies it and partially applies the copy to the original, producing
the abstraction (· under (� � (·) ×) f (· under (� � (·) ×) f)). Ap-
plying this abstraction ultimately produces an application of f to the origi-
nal abstraction: · f (· under (� � (·) ×) f (· under (� � (·) ×) f)).
Once again, f is free to consume as many other inputs after its recursive refer-
ence as it desires, and can also ignore the recursive abstraction as well.

2.3 Output

Operators cannot access values to their left, so a value preceded by no operators
can never be modified or affected later in execution. As a result, any term that
moves to the left of all remaining operators is an output of the program. Similarly,
any program can be supplied inputs on the right. A stream processor is then an
infinite loop, consuming each argument provided on its right, transforming the
input, and producing outputs on its left: a traditional transformational pipeline
is simply a concatenation of such programs with a data source on the end.

A program (or subprogram) can produce any number of outputs and consume
any number of inputs, and these match in an arity-neutral fashion: that is,
the composition does not require a fixed correspondence between producer and
consumer. It is not the case that all outputs of one function must be consumed by
the same outer function, as is usually the case when construction a compositional
pipeline in imperative or applicative languages.

3 Name Binding

The core calculus of Kihi does not include variables, but the language supports
name binding by translation to the core. The bind form takes as its first argu-
ment syntax that defines the name to bind.

bind (x) (t ...) value

The name x is bound to the value value inside the term (t ...), which is then
applied. For the translation to make sense as a compile-time transformation, the
name and body must be present in their parenthesised form in the syntax, but
the value does not need to be present; a bind may appear inside an abstraction
with no input as in (bind (x) (t ...)), in which case the bound value will be
the first input of the abstraction.

The transformation brings the bound value leftwards, jumping over irrelevant
terms, and leaving a copy behind wherever the bound name occurs. To translate
a bind form to the core, for each term t inside (t ...):

�������������
����������←���→���↓��������

Fig. 1. Redex Language Definition

t ::= | bind | x
x ::= variable-not-otherwise-mentioned

Fig. 2. Redex Binding Extension

(t ... · (tt ...) v ...) (t ... tt ... v ...) [Apply]

(t ... ← (tt ...) vt v ...) (t ... (vt tt ...) v ...) [After]

(t ... → (tt ...) vt v ...) (t ... (tt ... vt) v ...) [Before]

(t ... ↓ vd v ...) (t ... v ...) [Drop]
(t ... × vc v ...) (t ... vc vc v ...) [Copy]

Fig. 3. Redex Reduction Relation

1. If t is the name x to be bound, replace it with ×, to leave one copy of the
value behind in its place and another to continue moving left.

2. If t is an abstraction v, replace it with swap � (bind (x) v) × and then
expand the resulting bind form, to bind a copy of the value in v and swap
the original value to the other side of the abstraction.

3. Otherwise replace t with · � (t), to ‘jump’ the value leftwards over the
operator.

Finally, prepend � to delete the final copy of the value, and remove the paren-
theses. Translate nested binds innermost-outwards to resolve shadowing.

4 Implementations

Kihi has been implemented as mechanisation of the semantics, a practical Racket
language, and a web-based tool that visualises executions.

4.1 Redex

An implementation of Kihi’s core calculus in the Redex [3] semantics language
is presented in Figure 1. The syntax corresponds to the syntax we have already
presented. The reduction rules for this language are shown in Figure 3. The se-
mantics presented here proceeds right-to-left: this can easily be made unordered
by matching on t instead of v on the right side of each rule. When the seman-
tics are unordered, the Redex procedure traces shows every possible choice of
reduction at each step, ultimately reducing to the same value (or diverging).

The binding language extension is also encoded into Redex, with syntax
defined in Figure 2. The expand translation from this language to the original
calculus is defined in Figure 4. A malformed bind will produce a term that is
not a valid program in the original calculus.

expand : t → t
expand⟦(bind (x) v ttail ...)⟧ = (↓ tbound ... tcont ...)
where (tbound ...) = bind-body⟦x, expand⟦v⟧⟧, (tcont ...) = expand⟦(ttail ...)⟧
expand⟦(t ttail ...)⟧ = (expand⟦t⟧ tcont ...)
where (tcont ...) = expand⟦(ttail ...)⟧
expand⟦t⟧ = t
bind-body : x v → v
bind-body⟦x, (t ttail ...)⟧ = (tbound ... tcont ...)
where (tbound ...) = bind-name⟦x, t⟧, (tcont ...) = bind-body⟦x, (ttail ...)⟧
bind-body⟦x, ()⟧ = ()
bind-name : x t → (t ...)
bind-name⟦x, x⟧ = (×)
bind-name⟦x, v⟧ = (swap → (↓ t ...) ×)
where (t ...) = bind-body⟦x, v⟧
bind-name⟦x, t⟧ = (· ← (t))

Fig. 4. Redex Binding Expansion

Figure 5 presents an extension to the core calculus adding a simple type
system. A type � S T describes the change in shape from the given inputs to
the resulting outputs of executing a term. A shape is a sequence of types, and
describes the type of every value that will be available to the right of a term on
execution.

S, T, U ::= (A ...)
A, B, C ::= (⇒ S T)

Fig. 5. Redex Type Extension

A Kihi program is typed by the shape judgement, defined in Figure 6. The
empty program does not change shape, and a non-empty program composes
the changes in shape applied by their terms. Kihi terms are typed by the type
judgement, defined in Figure 7. For instance, the type of × begins with a shape
(A B . . .) and produces a shape (A A B . . .), representing the duplication of a
value of type A.

The type system does not include a mechanism for polymorphism, and there
is no way to abstract over stacks. As a result, every type must include the type of
every value to its right, even if it is not relevant to that operation’s semantics, so
it is difficult to write a type that describes a broad range of possible programs.

The complete Redex implementation is available from https://github.com/
zmthy/kihi-redex.

https://github.com/zmthy/kihi-redex
https://github.com/zmthy/kihi-redex

4.2 Racket

Kihi has also been implemented as a practical language in Racket. This version
provides access to existing Racket libraries and supports some higher-level con-
structs directly for efficiency, but otherwise is modelled by the Redex. The Racket
implementation is available from https://github.com/zmthy/kihi and operates
as a standard Racket language with #lang kihi. The distribution includes some
example programs, documentation, and a number of predefined utility functions.

4.3 Web

For ease of demonstration, a web-based deriving evaluator is available. This tool
accepts a program as input and highlights each reduction step in its evaluation.
At each step, the operation and operands next to be executed are marked in blue,
the output of the previous reduction is underlined, and the rule that has been
applied is noted. The program can be evaluated using both left- and right-biased
choice of term to illustrate the different reduction paths, and Church numerals
and booleans can be sugared or not. It supports many predefined named terms
which alias longer subprograms for convenience.

The web evaluator can be accessed at http://ecs.vuw.ac.nz/∼mwh/kihi-eval/
from any web browser. It includes several sample programs illustrating the tool
and language, with stepping back and forth, replay, and reduction highlighting.

As a debugging aid, the evaluator includes two special kinds of term as exten-
sions: for any letter X, ^X is an irreducible labelled marker value, while `X reduces
to nothing and has a side effect. These can be used to observe the propagation
of values through the program and the order terms are evaluated.

The web evaluator also allows expanding a Kihi program to core terms (that
is, using only the six operations of abstraction, application, left, right, copy, and
drop). This expansion performs the full reduction of the bind syntax to core, and
desugars all predefined named terms. In the other direction, a program can be
reduced to the minimal equivalent program (including shrinking unapplied ab-
stractions). Embedded is a command-line JavaScript implementation for node.js
that also supports these features.

shape⟦(), S, S⟧
[Identity]

type⟦ts, T, U⟧
shape⟦(t ...), S, T⟧
shape⟦(ts t ...), S, U⟧

[Operate]

Fig. 6. Redex Shape System

https://github.com/zmthy/kihi
http://ecs.vuw.ac.nz/~mwh/kihi-eval/

shape⟦v, S, T⟧

type⟦v, (A ...), ((⇒ S T) A ...)⟧
[Abstraction]

type⟦·, ((⇒ (A ...) (B ...)) A ...), (B ...)⟧
[Apply]

type⟦←, ((⇒ S (A ...)) B C ...), ((⇒ S (B A ...)) C ...)⟧
[Left]

type⟦→, ((⇒ (B A ...) T) B C ...), ((⇒ (A ...) T) C ...)⟧
[Right]

type⟦×, (A B ...), (A A B ...)⟧
[Copy]

type⟦↓, (A B ...), (B ...)⟧
[Drop]

Fig. 7. Redex Type System

5 Related Work

Kihi bears comparison to Krivine machines [9], Post tag system languages [11],
and other term-rewriting models. We focus on the compositional nature of exe-
cution in Kihi rather than the perspective of these systems and will not address
them further in this space.

As a simple Turing-complete language without variables, Kihi also has sim-
ilar goals to the SK calculus [1]. The core calculus of Kihi has five operators,
compared to SK’s two, but functions in Kihi are afforded more flexibility in their
input and output arities. The K combinator can be implemented in Kihi as �
swap, and the S combinator as · under (under (·) swap under (×)). While
the reverse is possible, it requires implementing a stack in SK so we do not
attempt it here.

Forth [10] is likely the most widely-known concatenative language. Forth pro-
grams receive arguments on an implicit stack and push their results to the same
stack, following a postfix approach where calls follow their arguments. While gen-
erally described in this imperative fashion, a Forth program is also (impurely)
functional and compositional when examined from the right perspective: each
function takes a single argument (the entire stack to date) and produces a single
output (a new stack to be used by the next function); from this point of view
functions are composed from left to right, with the inner functions preceding the
outer. The library design and nomenclature of the language favour the impera-
tive view, however. The implicit nature of the stack requires the programmer to
keep a mental picture of its state after each function mutates it in order to know

which arguments will be available to the next, while Kihi’s approach allows the
stepped semantics of our tools while retaining a valid program at each stage.

The Joy language [12] is similar to Forth and brought the “concatenative”
terminology to the fore. Joy incorporates an extensive set of combinators [4]
emphasising the more functional elements of the paradigm, but is still funda-
mentally presented as manipulating the invisible data stack.

5.1 Om

The Om language [2] is closest to Kihi in approach. Described as “prefix concate-
native”, in an Om program the operator precedes its arguments and the operator
plus its arguments are replaced in the program by the result, as in Kihi. The lan-
guage and implementation focus on embedability and Unicode support and are
presented in terms of rewriting and partial programs, rather than composition.
Despite some superficial similarity, Om and Kihi do not have similar execution
or data models and operate very differently.

Om’s brace-enclosed “operand” programs parallel Kihi’s abstractions when
used in certain ways. In particular, they can be dequoted to splice their bodies
into the program, as in Kihi’s apply, and Om’s quote function would be Kihi �
(). They can also have the contents of other operands inserted at the start or
end of them: to behave similarly to Kihi’s � and � operators requires double-
quoting, because one layer of the operand quoting is always removed, so that
->[expression] {X} {{Y}} is analogous to � (X) (Y); to get the unwrapping
effect of ->[expression] in Kihi would be � � (·). Om has a family of “arrow
functions” ->[...], <-[...], [...]->, and [...]<- for manipulating programs
interpreted in various ways, but in general these do not relate to Kihi’s arrow
operators. An operand “program” can be interpreted as a Unicode string, list,
dictionary, or function, and Om has distinguished functions for treating the
program as each of these interpretations and moving elements in and out, or
deconstructing elements (for example, turning {ABC} into {A}{BC}), contrasting
with the uniform lower-level treatment in Kihi.

Single-step abstract execution of an Om program results in another Om pro-
gram with the same result up to side effects. The Om implementation does not
provide single-stepping as an option, but a program lacking necessary arguments
pauses to wait for them to be supplied after evaluating as far as possible.

6 Future work

The separation of the six operations in Kihi allows exploration of the subset of
programs that omit one or more of the operations. Copy-free programs parallel
linear logic, while drop-free programs have similarities with the λI calculus and
SCBI calculus, and left-free programs do not reorder terms. These subsets and
their equivalences or limitations are worth further investigation.

While Kihi core is Turing-complete, it is impractical for large programs.
Building on the core to create a more usable compositional language, building out

a useful set of default functions, and extending Kihi with more convenient data
structures, is ongoing work. We are currently extending our past work on module
systems and code reuse [6,8,7] to this end, and also on visual programming [5]
for novices or end-users. We are interested in exploring domains and tasks where
this computational style is beneficial, and integrating it into other systems.

Efficient implementation and representation of Kihi is another live issue.
Construction of a suitable virtual machine or compiler for Kihi raises questions
of executing the computational model and encoding the operations.

7 Conclusion

Kihi is a compositional functional language with practical higher-level func-
tionality but only six core operations with simple semantics. A key aspect of
Kihi’s flexibility is the arity-neutral fashion in which functions can compose.
We have presented Kihi and the tools we have built to execute and explore the
language and the compositional model. These tools are capable of interacting
with a broader ecosystem as well as illustrating execution paths and allowing a
programmer to explore different facets of computation than most conventional
languages and tools provide.

References

1. Curry, H.B.: Grundlagen der kombinatorischen logik. American Journal of Math-
ematics 52(3), 509–536 (1930)

2. Erb, J.: Om programming language web site. https://sparist.github.io/Om/
3. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.

MIT Press (2009)
4. Frenger, P.: The JOY of Forth. SIGPLAN Not. 38(8), 15–17 (Aug 2003).

https://doi.org/10.1145/944579.944583
5. Homer, M., Noble, J.: A tile-based editor for a textual pro-

gramming language. In: VISSOFT 2013. pp. 1–4 (Sept 2013).
https://doi.org/10.1109/VISSOFT.2013.6650546

6. Homer, M., Bruce, K.B., Noble, J., Black, A.P.: Modules as gradually-typed ob-
jects. DYLA ’13, ACM (2013). https://doi.org/10.1145/2489798.2489799

7. Jones, T., Homer, M., Noble, J.: Brand Objects for Nominal Typing. In:
ECOOP 2015. LIPIcs, vol. 37, pp. 198–221. Dagstuhl, Germany (2015).
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198

8. Jones, T., Homer, M., Noble, J., Bruce, K.: Object Inheritance Without Classes.
In: ECOOP 2016. LIPIcs, vol. 56, pp. 13:1–13:26. Dagstuhl, Germany (2016).
https://doi.org/10.4230/LIPIcs.ECOOP.2016.13

9. Krivine, J.L.: A call-by-name lambda-calculus machine. Higher Order Symbol.
Comput. 20(3), 199–207 (Sep 2007). https://doi.org/10.1007/s10990-007-9018-9

10. Moore, C.: 1x Forth (1999)
11. Post, E.L.: Formal reductions of the general combinatorial decision problem. Amer-

ican Journal of Mathematics 65(2) (1943)
12. von Thun, M., Thomas, R.: Joy: Forth’s functional cousin. In: Proceedings of the

17th EuroForth Conference (2001)

https://sparist.github.io/Om/
https://doi.org/10.1145/944579.944583
https://doi.org/10.1109/VISSOFT.2013.6650546
https://doi.org/10.1145/2489798.2489799
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198
https://doi.org/10.4230/LIPIcs.ECOOP.2016.13
https://doi.org/10.1007/s10990-007-9018-9

Screenshots and outline

This appendix provides tool screenshots, identifies various features, and notes
points of behaviour that are incorporated in the demonstration.

Overall view of web evaluator

The top row includes, from left to right:

1. A text box for entering a Kihi program to evaluate;
2. A button that executes the program;
3. A button that translates the given program into core operations, expanding

binds and named terms;
4. A button that shrinks excess terms inside abstractions.

The second row provides buttons for the operator symbols. The third is the
output area, showing the final result value of the program and any values emitted
by the evaluation.

The check boxes, from left to right:

1. Select the leftmost available reduction (checked) or the rightmost available
reduction (unchecked);

2. Enable evaluation of the program without clicking “Run”;
3. Remove values reaching the left-hand edge and move them to the output

area;
4. Render operators as names (e.g. right) instead of symbols (�);
5. Sugar outputted Church numerals into textual numbers;
6. Render operators using substitute ASCII symbols (e.g. :) instead of math-

ematical symbols (×). This mode suits some limited browsers and systems.

The step limit determines the maximum number of reduction steps the eval-
uator will take before stopping. It also stops if a program becomes too long.
These stopping points are to preserve browser resources. In particular, programs
with nested binds (as in the provided factorial example program) can expand to

many thousands of terms of core Kihi, and creating the list of steps performs
very poorly. This is a limitation of the web evaluator.

The fourth row allows manual stepping through the evaluation: jumping to
a specific numbered step (left), dragging the slider through steps (middle), or
automatically replaying and pausing evaluation (right).

The black box shows the current program being evaluated at this step, de-
picted and described in more detail in the next section.

The “Steps” heading shows the total number of steps, and acts to hide or
restore the complete list of reduction steps below. The filter text box permits
showing only a subset of steps: for example, entering “left” will make only “left”
reduction steps appear.

The list of steps shows the program as it is at each step, underlining any
new terms introduced at that step and marking the rule used to obtain them.
Hovering the mouse over the rule will show a detailed display of the specific
reduction. The terms to be reduced next are highlighted in blue; it is possible
for portions of the program to be both new (underlined) and to-be-reduced (blue)
at once. Clicking on a step jumps the display above to that step of the program.

A labelled list of sample programs is below, any of which can be loaded and
evaluated by clicking the title.

Single-step display of web evaluator

The complete program at this step is displayed at the top, with the rule that
produced it displayed below. The underlined text in the program is that on the
right-hand side of the rule display, and blue text is the next to be expanded as
before. The rule display highlights different elements of the rule (for example,
arguments) and matches corresponding elements on each side with the same
highlighting.

	The Practice of a Compositional Functional Programming Language
	1 Introduction
	2 Computation
	2.1 Data Structures
	2.2 Recursion
	2.3 Output

	3 Name Binding
	4 Implementations
	4.1 Redex
	4.2 Racket
	4.3 Web

	5 Related Work
	5.1 Om

	6 Future work
	7 Conclusion

