
Gradual typing is morally incorrect; we’re all monsters now

Timothy Jones
Victoria University of Wellington

tim@ecs.vuw.ac.nz

Michael Homer
Victoria University of Wellington

mwh@ecs.vuw.ac.nz

The aspiration of gradual typing [4] — that typed and un-
typed code can coexist happily, with errors reported at run-
time when the types are found to be wrong — has led many
languages, including our own, to adopt the paradigm. The
practice is different; even the term itself has been refined
short of this aspiration [5], and languages abdicate their re-
sponsibilities as soon as they become too onerous: when an
object reënters dynamically-typed code, in the presence of
aliasing, or with regard to secure object identity.

Gradual typing that uses proxies either does not retain
object identity — breaking aliasing — or introduces a mech-
anism to avoid it [6], breaking security guarantees. When the
object passes back to the dynamic world, the proxy is often
removed, rendering the type assertion meaningless.

If instead object identities are mapped to sets of con-
tracts, which the monotonic semantics [7] approximates, we
must update these contracts as new information refines them.
These updates are visible and have a semantic effect on type
tests or even the ability to call a typed function. If we do not
update in every instance where new information is gained
then we instead commit to actions we know to be wrong.

Extra information about the type of an object is gained in
many more places than just when the object passes through
a type assertion. When an object’s ‘foo’ method returns a
string, then it should fail any future assertion that foo returns
a number, even if such a property holds true from that point
on. Unions of types must also collapse to to a smaller type
when one of the members of the union is proved false, and as
a result any update of type information can potentially have
a cascading effect through the current state of the program.

If runtime type errors are catchable, the program be-
haviour can even change based on the inferred type informa-
tion. Gradual type errors must be uncatchably fatal in order
to conform to the refined criteria for gradual typing [5], as
a complete (though not necessarily sound) type test can be
recovered from whether such an error appears as the result
of an assertion (or a probe of higher-order contract). Fatal er-
rors are provided for by the theory [8], but in practice much
effort has instead been made to ensure that the right kind of
error is raised precisely for the purpose of being caught by
the appropriate guard [7].

Each different interpretation of gradual typing ascribes
different spatial and temporal meaning to their types, but the

literature has tended to only focus on soundness within that
particular ascription and the performance differences of the
resulting implementations. The clearly-correct thing to do is
to ensure that incorrect code does not execute to begin with:
when a type assumption is shown unfounded, unexecute the
code and reverse the assumption [1]. Unfortunately, in the
general case this option only works at 88mph [3].

A type assertion should be meaningful. If the assertion
is known to be false, an error should be reported. Aliases
of the same object ascribed different types, the collapse of
variant or generic types, objects passed to dynamically-typed
code with the understanding that they had a particular type,
and even past behaviour, are all routes through which an
assertion can be falsified, but all practical gradual systems
ignore some or all of these cases. The level of knowledge
the system has can change behaviour, and the only morally
correct [2] behaviour is to retain an impossibly complete
level of information on the types of objects.

References
[1] BENTON, N. Undoing dynamic typing. In FLOPS (2008),

Springer-Verlag, pp. 224–238.

[2] DANIELSSON, N. A., HUGHES, J., JANSSON, P., AND GIB-
BONS, J. Fast and loose reasoning is morally correct. In POPL
(January 2006), pp. 206–217.

[3] NORTH, R., AND GIPE, G. BˆF: Steven Spielberg Presents:
Back To The Future: A Robert Zemeckis Film: The Novel by
George Gipe based on a screenplay by Robert Zemeckis and
Bob Gale: Reviewed by Ryan North. 2012.

[4] SIEK, J., AND TAHA, W. Gradual typing for objects. In
ECOOP (2007), Springer-Verlag, pp. 2–27.

[5] SIEK, J. G., VITOUSEK, M. M., CIMINI, M., AND BOY-
LAND, J. T. Refined criteria for gradual typing. In SNAPL
(May 2015), pp. 274–293.

[6] STRICKLAND, T. S., TOBIN-HOCHSTADT, S., FINDLER,
R. B., AND FLATT, M. Chaperones and impersonators: run-
time support for reasonable interposition. In OOPSLA (October
2012), pp. 943–962.

[7] VITOUSEK, M. M., KENT, A. M., SIEK, J. G., AND BAKER,
J. Design and evaluation of gradual typing for Python. In DLS
(October 2014), pp. 45–56.

[8] WADLER, P., AND FINDLER, R. B. Well-typed programs can’t
be blamed. In ESOP (March 2009), pp. 1–16.


