
Building A Graceful Language
Design by Instructor

Timothy Jones

Victoria University of Wellington
tim@ecs.vuw.ac.nz

December 16, 2013

mailto:tim@ecs.vuw.ac.nz


The Language

The Language

Frustration with languages used for teaching

Pascal is old, Java is bloated

Grace is the absence of everything that indicates pain or
di�culty, hesitation or incongruity.

— William Hazlitt

1



The Language

Goals

I Support multiple paradigms
I Objects
I Scripting/Procedural
I Functional

I Minimise conceptual burden

I Diverse applications within syntactically consistent language

2



The Language

First Taste

In Java:

public class Main {
public static void main(String[] args) {

System.out.println("Hello world");
}

}

In Grace:

print "Hello world"

3



The Language

Objects

var john := object {
def name is public = "John"

method say(phrase) {
print "John says {phrase}"

}

print "John has been born!"
}

4



The Language

Gradually Typed

type Person = {
name→ String
say(phrase : String)→ Done

}

var kate : Person := object {
def name : String is public = "Kate"

method say(phrase : String)→ Done {
print "Kate says {phrase}"

}
}

5



The Language

Classes
class aPerson.named(name′)→ Person {
def name is public = name′

method say(phrase) { print "{name} says {phrase}" }
}

Translates to:

def aPerson = object {
method named(name′)→ Person {
object {
def name is public = name′

method say(phrase) { print "{name} says {phrase}" }
}

}
}

6



The Language

Blocks

First class functions:

def double = { x→ x + x }
double.apply 10

Like numbers and strings, no need for parens in method requests

method shi�Up(list : List〈Number〉) {
list.map { x→ x + 1 }

}

7



The Language

Control Structures
Methods may be written ‘mix�x’

method substringFrom(start) to(end) { ... }
str.substringFrom 3 to 5

Combined with blocks, we can de�ne our own control structures:

method while(cond) do(block) {
if(cond.apply) then {

block.apply
while(cond) do(block)

}
}

while { x < y } do { x := x ∗ 2 }

8



The Language

Dialects

Change the local de�nitions (but not the syntax) of a module

Check that the module conforms to certain rules (eg. must use types,
no mutable variables)

The entire static type system is just a dialect!

9



The Designers

The Designers

I Andrew Black

I Kim Bruce

I James Noble

10



The Designers

The Designers

I Object Constructors and Dynamic Typing

I Kim Bruce

I James Noble

10



The Designers

The Designers

I Object Constructors and Dynamic Typing

I Classes and Static Typing

I James Noble

10



The Designers

The Designers

I Object Constructors and Dynamic Typing

I Classes and Static Typing

I The Mediator

10



The Designers

The Audience

Designed by Instructors, for Instructors

Di�erences of opinion in the design represent real-world di�erences
of opinion in how OO should be taught

Compromise leads to interesting design decisions!

11



Object Inheritance

Implementing Inheritance

Objects-only? Delegation!

def snake = object {
def noise = "hiss"
method makeNoise {

print(self.noise)
}

}

def ra�leSnake = object {
inherits snake
def noise = "rattle"

}

12



Object Inheritance

Implementing Inheritance

Objects-only? Delegation!

def snake = object {
def noise = "hiss"
method makeNoise {

print(self.noise) // self is bound to the receiver of makeNoise
}

}

def ra�leSnake = object {
inherits snake
def noise = "rattle"

}

12



Object Inheritance

The Identity Problem

The two objects have separate identities!

def snake = object {
def this = self
def noise = "hiss"
method makeNoise {

print(this.noise)
}

}

def ra�leSnake = object {
inherits snake
def noise = "rattle"

}

13



Object Inheritance

‘Becomes’ Inheritance

Solution: an inheriting object merges identities with its super object

class aSnake.new {
def this = self
def noise = "hiss"
method makeNoise {

print(this.noise) // identity of self is rewritten to be rattleSnake
}

}

def ra�leSnake = object {
inherits aSnake.new // can only inherit from a fresh object
def noise = "rattle"

}

14



Object Inheritance

Initialisation Problem

Objects have di�erent structure at each part of the constructor chain

class aSnake.new {
def noise = "hiss"
self.makeNoise // self is not yet rattleSnake

}

def ra�leSnake = object {
inherits aSnake.new
def noise = "rattle"
method makeNoise {

print(self.noise)
}

}

15



Object Inheritance

Constructor Specialisation

Every method with a tail-call object has two variants

method new {
object {}

}

method new_inherits(self) {
...

}

Essentially JavaScript’s new Snake vs. Snake.call(this)

16



Object Inheritance

Abstract methods

class aBird.new {
method fly {

if(self.canFly) then {
print "take off!"

} else {
print "crashed!"

}
}

}

def kiwi = object {
inherits aBird.new
def canFly = false

}

17



Object Inheritance

Abstract methods

class aBird.new { // is this class well-typed?
method fly {

if(self.canFly) then {
print "take off!"

} else {
print "crashed!"

}
}

}

def kiwi = object {
inherits aBird.new
def canFly = false

}

17



Typing Self

Typing Self

What is the type of self?

The value is never explicitly given a type, so how do you supply it?

Default is dynamic, add extra information in a dialect

Add annotations to prevent all-or-nothing scenario

18



Typing Self

Typing Self

What is the type of self?

The value is never explicitly given a type, so how do you supply it?

Default is dynamic, add extra information in a dialect

Add annotations to prevent all-or-nothing scenario

18



Typing Self

Typing Self

What is the type of self?

The value is never explicitly given a type, so how do you supply it?

Default is dynamic, add extra information in a dialect

Add annotations to prevent all-or-nothing scenario

18



Status Report

How far away are we?

I Trial courses starting next year

I Tooling and development environments the next major goal

I Ready for general consumption by 2015?

19



Links

Links

gracelang.org

ecs.vuw.ac.nz/~mwh/minigrace/js

github.com/mwh/minigrace

grace-core@cecs.pdx.edu

20

gracelang.org
ecs.vuw.ac.nz/~mwh/minigrace/js
github.com/mwh/minigrace
mailto:grace-core@cecs.pdx.edu

	The Language
	The Designers
	Object Inheritance
	Typing Self
	Status Report
	Links

